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1. Introduction. 

Recently several authors [1-8] have given an asymptotic solution with 
respect to frequency of the reduced wave equation. 

D.S. Jones [i, 2] derived the solution by means of asymptotic expansion 
of the integral equation which is obtained on treating some simple problems. 
This method is not easy to handle in the three dimensional case of diffrac- 
tion around arbitrary convex shapes. 

A very useful method is developed by J.B. Keller [3,4]. This theory 
employs rays as the basic concept and in this way some diffraction problems 
are solved by J.B. Keller, R.M. Lewis and B.D. Seckler [5]. However in 
this theory always some results, which are obtained by other expansion, 
are used. 

A more general method is given by R. N. Buchal and J. B. Keller [6] by 
means of the application of the known boundary layer expansion theory. 
In this way expansions are obtained in the ease of two dimensional caustics 
and diffraction of a wave by an aperture in a thin screen. 

Boundary layer expansions are also used by V.A.Fock [7] in the two 
dimensional diffraction of waves by an arbitrary body. E.Zauderer [8] 
treated the general three dimensional ease of diffraction by an arbitrary 
shape, however, this method does not give all the results without using 
some expansions which are obtained geometrically by J.B. Keller [ 3] who 
uses some known exact expansions, In particular E. Zauderer employs the 
exponential behaviour in the far field of the shadow region. 
In this article we will ~ develop the asymptotic expansion in the shadow 

region of a body of special shape without using results obtained from other 
expansions. This method is directly to be used in more general problems. 

The problem of diffraction of a time harmonic spherical wave in the 
shadow region of a sphere will be solved by means of boundary layer ex- 
pansions. We introduee "ray coordinates". In an homogeneous medium the 
rays are straight lines. On the sphere creeping rays occur which are 
geodesic lines starting in the points where the incident rays are tangent 
to the sphere and which have the direction of the incident rays at these 
points. The rays in the shadow region are straight lines generated by the 
creeping rays tangent to the sphere. The latter rays will be used to intro- 
duce new coordinates and can be used in general eases of diffraction of 
general incident waves by convex bodies. 

In this article the method is carried out in the case of high frequency 
scattering of a spherical wave by a sphere. We consider only the first 
term of each asymptotic series supposing it exists. 

In this article no further justification of the asymptotic expansions is 
given. This will be done in a thesis which will be published soon. 

2. Formulation of the problem. 

We consider the field of a spherical source at the point P(-p, O, O) dif- 
fracted by a sphere and solve this problem in the case of high frequencies. 
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The scalar function ~ has to be a solution of the reduced wave equation, 

/x(~+ k2~ = 0 (1) 

with large values of k. 
This function ~ must vanish on a sphere with radius one and with the 

center in the origin. 

Z 

I 

Fig. 1. 

X 

The problem is axially symmetric and we introduce the new coordinates 
~,~ and @ as defined in figure i. 

-~ is the arclength along the ray 
is the arclength on the geodesic 

e is the polar angle. 
We define ~o in such a way that the arclength PQ along the ray is equal 

to ~ -~o. This coordinate system is not one valued. 
A point Q(x,y, z) is determined by 

ms = ~ + 2 ~rm ) m = 0, i, 2 .... 

~ml r]s + 2 ~ ~ (2') 

@~ = e + s s = 0 , 1  

The point Q is reached by rays generated from two different points on 
the sphere, however the arclength of the creeping rays generating from 
one of these points differs 2=m and therefore the amplitudes are different. 

Hence the solution ~(x, y, z) is a superposition of the corresponding solu- 
tions 

~(x ,y , z )  = ~ ~(~mo,r/mo,eo) + ~ ~(~;ml, r /ml,01) 
m=O m=O 

(2) 

The new coordinates are suitable to give us the solution in the shadow 
region and near the shadow boundary. In the lit region we find the total 
field by adding the geometrical field to the diffracted field. 

In this article we only consider the diffracted field in the shadow region. 
The function ~ is independent of 8, so in the new coordinates we get the 

differential equation 
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1 a (~ -7 ) f (~ ,7 )  ~-  + a-~ ~ - 7 ~ + : A ~ + k 2 ~  = (~ - ~ ) f ( E , ~ )  (3) 

with f(~,*}) = sin*} + (T - ~ )  cos*}.  

We s u b s t i t u t e  

ik(~ - ~ o) 
.~ (~,7) = rp (~,*})e (4) 

The new differential equation is 

fr 
- ~ - 1 ~ a~ 1 1 ~ + ___ + 

*} a~ (~  - ~) ~ + ~ _ _  ~ *} a7 aT f 

17 { f~l a~o f~ a~ ~ + p~- = o 
+ iT - )2 ~-~ ~- + ik 2 ~ - +  ~ _  7 

wi th  the b o u n d a r y  c o n d i t i o n  

p = O  if  %= 7 

(5) 

and the incident part of ~ is equal to the incident wave on the shadow 
boundary: 

ik(~ -~o) 
~ _ e i f  7 = * } o  = ~ o "  ( 6 )  ~~ ~ - ~o 

We t r y  to find a so lu t ion  with t h e s e  b o u n d a r y  c o n d i t i o n s  at f in i te  d i s t a n c e  
f r o m  the s p h e r e .  

3. First approach to the approximation at finite distance from the sphere. 

We a p p r o x i m a t e  the v a l u e  of ~ f o r  l a r g e  v a l u e s  of k. 
(5) has  a s o l u t i o n  of the f o r m  [10]  

ikS~F(rl) ~ k -n 
~ o ( ~ , * } ; k )  = e ~ o n ( ~  ~) 

B= 0 

with s < �89 

We s u p p o s e  equation 

(7) 

The function @ has to be a constant along a ray. 
When (7) is inserted into (5) we equate the coefficient of each power of 

k equal to zero. 
The first equation, which gives the first approximation, is 

&#oo ~Poo f ~, 
2 ~ + ~ _ ~  + % o  f - 0 (8) 

This is a first order differential equation with the solution 

~Ooo (~,  7 ) = A(7)  (9) 

This solution is singular if ~-7 = 0, that is on the sphere, or if f(T,7) = 0 
on the line through the source and the center of the sphere. We have to 
satisfy a boundary condition at infinity or a matching condition for ~-~ --} 0 
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to d e t e r m i n e  A(r/), s ,  and  ~F(~). We h a v e  no c o n d i t i o n  a t  i n f in i ty ,  so  we 
f i r s t  h a v e  to c o n s t r u c t  a s o l u t i o n  f o r ' s m a l l  v a l u e s  of. ~-r/. 

4. Boundary layer expansion near the sphere and the shadow boundary. 

N e a r  the s p h e r e  and the s h a d o w  b o u n d a r y  ~ and r7 bo th  t end  to ~o,  s o  
we de f i ne  the new v a r i a b l e s  ~ and  

= a o +  k - X a }  
)t ~o + k-Xl  3 (io) 

T h e  v a l u e  of k h a s  to be  d e t e r m i n e d  b y  the s t r e t c h i n g  c o n d i t i o n .  I f  we 
put  the new v a r i a b l e s  (10) in to  e q u a t i o n  (5) th i s  y i e l d s  the  new e q u a t i o n  

k 2x 3 8~0 k 4x 3 1 0~ 

~-~ a--g (~-r a-g~+ ~-~ a~ ~-~ a8 

3~ f~ 
+ k x - -  --+ 

3o~ f 

kSX 3~o f~ t 8~o qo f~}  
+ o~--]3 0/3 f + ik 2k k ~-+ k x ~_---~ + ~--f- = 0 (11) 

We s u p p o s e  f(%,t/) = 0(1) in th i s  r e g i o n ,  then  the s t r e t c h i n g  c o n d i t i o n  
r e q u i r e s  t ha t  1 + k = 4 k  f r o m  w h i c h  i t  f o l l o w s  tha t  

1 k : ~ (12) 

Now we assume ~ has the expansion 

~ l ( a , , 3 ; k )  = k r ~_, k-n/3~ptn(o,,/3 ) (13) 
rt=O 

and if we put this in equation (ii) we put each coefficient of each power 
of k equal to zero. The first term of this expansion is a solution of the 
equation 

1 3 I 3~010 3~OI0 ~010 
a - ~  3~ c~-B 0/3 + 2i ~r + i a_~ - 0 (14) 

with boundary condition 

910 = 0 if a = ~. 

With the substitution 

(D10 = u. exp I -i(~-~)3 } 3  

and the new variables 

x = 2-i/3 ~ ) 

y = 2"2/3 (~@)z  

we ge t  the p a r a b o l i c  e q u a t i o n  

32u + i 3u + yu = 0 
Oy 2 3x 

(15) 

(16) 
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Fock [7] gives the solution of this equation for x> 0 and Yo > y 
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w(t) 
c 

(17) 

In this formula x o and Yo 
contour C encloses the first quadrant of the complex t-plane. 

The function w(t) is a solution of the equation 

are x,y coordinates of the source and the 

w"(t) = t w(t) and is defined by the following Airy function 

2~ri 

w(t) = e --~- ~ ( - t ) l /2  ~I/3T-TCD {~2 (_t)3/2} (18) 

With H~ I) is the Hankel function of the first kind and the order 1/3. 
The functlon v(t) satisfies the same differential equation and is equal to 
the imaginary part of w(t) for real t. 

As a solution of our problem we take 

2 (y3/2 3/2 ~ e it(X-Xo) 
910 = Bexp [ - i - ~  +Yo , ~ ) e  w ( t - Y o ) { V ( t - y  ) - v ( t )  w ( t - Y ) } w ( t )  dt (19, 

if  x > 0 and Yo > Y 

and ~~ ~ kr 910.  

We a r e  a l s o  ab le  to e v a l u a t e  a s o l u t i o n  of the l i t  r e g i o n  w h e r e  x < 0, 
bu t  we ha ve  to take  a n  o t h e r  c o m b i n a t i o n  of  A i r y  f u n c t i o n s  and c l o s e  the 
c o n t o u r  in the f o u r t h  q u a d r a n t .  T h i s  g ives  us  the p o s s i b i l i t y  to g ive  the 
s o l u t i o n  in the who le  g l a n c i n g  a r e a .  H o w e v e r ,  in th i s  a r t i c l e  we o n ly  c o n -  
s i d e r  the shadow r e g i o n .  

We e v a l u a t e  i n t e g r a l  (19) as  a s u m  r e s i d u e s  

W(ts-Yo ) W(ts -Y) 
2 (y3/2 _ 3/2 )} s=l~ e its(x-x~ (20) 

~o 1 ~ - 2 ~ i k  r B exp  {- i ~ + Yo ~ w l ( t s ) t  2 

T h e  p o l e s  t =  t s a r e  the z e r o s  of the fu n c t i o n  w(t) .  T h e s e  a r e  po in t s  on 
Irl 

the l i ne  t = pe  3 f o r  r e a l  p o s i t i v e  p, [ 9 ] .  

E v a l u a t i n g  (20) f o r  l a r g e  v a l u e s  of y = (k)2/3(~_~)2 and Yo = (k)2/3 ( t g a o ) 2  
we get the result 

27r Bkr-i/32 i/3 exp {i "k'i/3 ~ ts(~-%) t 
(21) 

{ w l ( t s ) }  2 

We ha ve  to m a t c h  th i s  s o l u t i o n  wi th  the s o l u t i o n  a t  f in i t e  d i s t a n c e  f r o m  the 
s p h e r e .  As we s e e ,  we have  to take  i n s t e a d  of (9) a s o l u t i o n  of the f o r m ,  

2, D k p exp {i(k) I/3 t s (r~ -~o)} 
(22) 

+ 

w h ic h  is  an a s y m p t o t i c  s o l u t i o n  of (5). 
If  we m a t c h  t h e s e  two s o l u t i o n s  in the r e g i o n  ~-~ ~ 0 and ~ ~ a o we f ind 

p = r - l / 3  and D = 21/3 B and if  we w r i t e  (22) in the i n t e g r a l  f o r m  l i k e  
(19) we f ind the s o l u t i o n  
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k r B V~ga o 

~o ~ Vtg~ + (~-~) 
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2 (y3/2 3/2 
exp {- i  ~ +Yo )" 

�9 f eit(x-X~ ) {v( t -y)  - v(t) w ( t - y ) }  dt 
C 

(23) 

The constants r and B have to be determined with the condition that on 
the shadow boundary the incident part of (23) is the same as the incident 
wave. In the region r~ ~ s o solution (22) converges very slowly, so we 
have to evaluate (23) by the method of stationary phase (Fock [7 ]). 

We find the relation 

21/6 i 4 kr-i/6 g k / ~ g  c o e 1 

~ o  ~ - (24) 
t g s  o + ~ -% " tga  o + ~-a  o 

So we find 

r = 1/6 
if 

2 -1/6 e"  ' 7 
B -  

k/~-~ tg s o 

(25) 

In this way we constructed a solution at infinity for large values of %-r~ 
with ~-s o large enough to have convergence 

27r (k)-i/6 e--g exp {i ,k.1/3 t~) t~ (n-%)} 
~. ~ (26) ~'o V~g~o V(~-r}){tgD + (}-~)} s=O ~wl(ts)}2 

It  is  e a s y  to show by t ak ing  the s u m  of r e s i d u e s  tha t  (23) a l so  ho lds  
n e a r  the s p h e r e  if r] ~ c ~ excep t  in the r e g i o n  w h e r e  tgr~ + (l~-r/) ~ 0. 

5. Boundary layer expansion near the caust ic .  

The given e x p a n s i o n s  a r e  va l id  in the r e g i o n  f(~,r?) = 0 (1). We sha l l  
i n v e s t i g a t e  the b e h a v i o u r  of the f ie ld  n e a r  the l ine  f(E, r]) = 0. Knowing 
f(E, r/) is  the d i s t ance  f r o m  the o b s e r v a t i o n  point  to the c a u s t i c ,  we f o r -  
m u l a t e  new v a r i a b l e s  s and ~. 

s i n r l  + (~-rT) cos  r] = k - ~ s )  
(la) 

We suppose that the solution has the form 

92(~ ' r l ;k )  = s=l ~ u ( ~ , ~ ; s , k ) e x p  f i ( k ) l / 3  ts(~-O~o)} (2a) 

and find for each u(~, N; s, k) the differential equations in the new variables, 

1 a g~ { au au I (k ~cOsr7 ~ + ) ~3(k ~cosN ~-~ + ~-~) + 

lj' k 0u 0 u}  
+ ~( ts+ ~sin~ ~ + ~-~) (-i(-~) tsu+k~sin~ ~-~ + ~-~) + 
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+ - -  k~cos~ 0u 
(kUcos~ ~-~+ ~-~) + ~ tsu+k~/3 sin~l ~-~+ ~ + 

8u 8u u + ik 2(k ~ cos~] ~-~ + ~.--~) + ~ + k~c~ u}= 0 (3a) 

The stretching condition requires that 1 +~ = 2~, from which it follows 
that ~ = i. 

In the neighbourhood of the caustic we assume that u(~,#;k, s) can be 
expanded in the following series 

u ( a , ~ ; k , s )  = k t ~ ' U n ( a , 1 3 ; s ) k  -n 
n=0 

(4a) 

If we put this in equation (3a) and equate each power of k equal zero, 
we get the first approximation 

82Uo 1 8u o 8u o 
-- + ---- + 2icosr~ -- + i-- 
8~ 2 a 8~ 8~ 

1 
with cos ~ -~ - -  

V1 +8 2 
We find the  fo l lowing  so lu t i on  

cos~7 

Uo = 0 

~2(cG~;k) = kt ~=1 K(/3, s ) e x p  {i(2k--)!/3ts(N-ao)}. ex p {- i~ c o s ~ }  H(ol)(~ cos  9) 

(5a) 

This solution has the required exponential behaviour for large values of 
~. The Constanf K(~, s) is determined by a matching condition with the 
solution near the sphere on the same ray. 

We find the constants 

27ri 2 -1/3 cos~ 1 
K(~, s) - (Sa) 

and t = I/3. 
In th is  w a y  we found the so lu t ion  n e a r  the c a u s t i c ,  h o w e v e r  (5a) is 

s i n g u l a r  on the c a u s t i c  w h e r e  ~ = 0. A regular so lu t ion  wil l  be ob ta ined  
by  add ing  the so lu t ion  of the s e c o n d  r a y  to th is  so lu t ion  

p(-p.o 
/ 

Fig. 2. 
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T h e  t o t a l  r e s u l t  of  the  t wo  r a y s  i s  f i n i t e  i f  6 ~ 0 (wi th  6 = l a l ) .  
We  g e t  i n s t e a d  o f  ' ~  

-i6kcos~ . (1) (6 k COST)--*~ lira e ri o 
6--0 

the finite limit 

{ -iSkcos~7 H(1 ) i6kcosn (2) } 
6-.01im e o (6 k cosT) + e H o (6k cos~) = 2 

Until now we investigated the solution of (2) with m = 0, 1 = 0 or I. 
To find the total solution we have to summarize over all the different 
coordinates. 

We consider one side of the polar axis. The result on the other side is 
the s a m e  if  we c o n s i d e r  ax ia l  s y m m e t r y .  

6. Final resul t s  in the shadow region. 

p(-p,0,0) 

e. o 

OL o 

,-<', / 

TI2 y ~;2-TI2 

Ill 

Fig. 3. 

In the shadow r e g i o n  we find the fo l lowing  r e s u l t s  
a) In r e g i o n  I 

71 >> ao E1 >> ~21 and 5 = 0 (i) 

72 >> ao E2 >> 72 

we find with (2), (4) and (26) the solution 

2= (k)i16 _~A 
4 

~I(Q ) ~ k/~tgao e exp {ik(tgc~ o -C~o) } 

[ ( k.1/3 {1 + 
eik~ I ~ exp }i(~) is(7 1 -OZo) } -exp(2k~ri 2(})i/3ts~ri} 

L s=o 

-i 

+ 
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ik ~2 
+ e  ~ 

S=0 

b) In region II 

k t/3 {1-exp(2k~i  + k,1/3 -1] exp  {i(~) ts(r72- ao) } 2(~, tsar�89 

+ J 

91 ~ So and ~1 ~ H1 

( 7 a )  

it is sufficient to take as an asymptotic solution only the first term of 
series (2) with I = 0 which is asymptotically the incoming part of the wave. 
So with (23) and (2) we get the solution 

(k ~i _�89 { . 2 .  3/2 )t )1/6 e-" $ 7r exp  _ 1-3(Yl + y : / 2  
n (Q) "~ 

~/ tgrh + (~1-~1)  

v(t) )}.dt e i~(~-~o) f ei~(~-~~ w(t-Yo ) {v(t-y~ ) - w(t) w(t-y~ (8a) 

with  x = ~'(2)1/3(~-so ) 

Y = (k) 2/3 (~_rl)2 

and the c o n t o u r  C e n c l o s e s  the  f i r s t  q u a d r a n t  in  p o s i t i v e  d i r e c t i o n .  T h i s  
s o l u t i o n  can  a l s o  be u s e d  in the  l i t  r e g i o n ,  h o w e v e r ,  we have  to c h a n g e  
the A i r y  f u n c t i o n  and the c o n t o u r  C. 

c) In the n e i g h b o u r h o o d  of the o b j e c t  ( r e g i o n  III), w h e r e  ~ ~ r/ and  5 = 0(1), 
we a l s o  f ind  a good a s y m p t o t i c  e x p a n s i o n  by t a k i n g  the  f i r s t  t e r m  of both  
s e r i e s  of (2). F o r m u l a  (23) and (2) g ive  the  s o l u t i o n  

-�89 2/3 3/2 exp{-i Yo -ik o}" 
2 3/2 n eit(Xn-Xc) ' l e x p ( - i ~ - y  n - ik~ ) f w(t_yo)  {v(t_Yn) _ v(t) w(t) w( t -Yn))  dt  

2 c 

E 
n=l ~/tgr/n + (~n-r /n)  (9a) 

and if r/ >> s ~ we may take the sum of the residues. 

d) In region IV near the caustic on which 5 ~ 0 we have to make a super- 
position of solutions like (5a). 
In this regio n ~i ~2 = ~ and 

E1 -HI = ~2 -~2 = ~ - ~ with 

s = k(sinN + (~ - U)cos~) = kS. 

The result is 

2ri(k)I/3 c~ ~ [exp (_i~c osU ) H(oD (~ cosu)+exp (ia e os~)H(o2) (~ e os~)]. 
$Iv (Q) ~-" V,,tgSo(~_r/) 

~, exp  {. .k,1/3 i(~) ts(~-S~ exp{ik(tga~176 + ~)} (lOa) 
s=O {wl(ts)}2 [1 _ exp {2kTri + 2(k) 1/3 ts ~ri}] 



112 A.J. Hermans 

e) In r e g i o n  V g ~ /  and 5 = o. 

We find the i n t e g r a l  r e p r e s e n t a t i o n  by  m a t c h i n g  7III and ~IV 

-1 [exp(-io cosn)H ' (, cosn)+ exp(io, cos n I-I(o2)(o eosn)]. ~v(Q ) ~ (k)2/3 r c o s t /  

exp(_i2 3/2 3t2)} ik(r -~O)cf �9 (Y +Yo e e i t fx -x~  w ( t - y ) t  dt ( l l a )  

In this  r e g i o n  it is  b e t t e r  to d ev e lo p  the i n t e g r a l  as  a s u m  of r e s i d u e s .  
We ge t  a c o n v e r g e n t  s e r i e  b e c a u s e  the z e r o s  t s of w(t) a r e  po in t s  of the 

~ri l ine  t = p e  - - .  
3 

E x p a n s i o n  of W(ts-Y ) is  not  a l lowed  if y is  s m a l l .  

2 a/2 )} eik(~-~o) �9 exp {- i  5 (y 3/2 + Yo 

with x = (-k2)i/3 (g-o%) 

Y = (k)2/3 (g_r/)2 

e its(X-Xo) W(ts  - Yo ) W( t s  - Y) 

f w(t s)t  

As we see the method applied in this article gives the asymptotic expan- 
sion in the entire shadow region of the sphere. It is also possible to give 
the solution in the lit region. This gives no more difficulties. The reasoning 
of this article also holds in the case of incident plane waves and diffraction 
around bodies of arbitrary shapes. 
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